
Increasing the Level of Abstraction as a Strategy for Accelerating the Adoption of

Complex Technologies

Willy C. Shih

Harvard Business School

Abstract. Many new technologies are complex and embody high levels of technical

sophistication, and applying them should require significant knowledge and experience. Yet, the

rapid adoption and incorporation of these technologies into other innovations seems inconsistent

with the expertise needed to make them work. In this paper, we propose increasing levels of

abstraction as a strategy for speeding the adoption of new technologies. Higher-level abstractions

package complexity in ways that makes them easier to understand and recombine, and they

decrease the resources needed by firms to deploy sophisticated technical know-how. Increasing

the level of abstraction is a way to push forward the innovative frontier by making such difficult-

to-use technologies readily accessible to other innovators. Although this framing has been used

in engineering and software development to describe modular encapsulation and cumulative

innovation, we propose its use in the management literature to describe more broadly the uptake

of new technologies and their facile recombination. This framing casts a different light on

cumulative innovation and exposes new managerial questions to explore.

Technological change lies at the heart of economic growth (Romer 1990), and we live in an era

in which many new technologies are incorporated into products and services at an extraordinary

pace. New technologies build on a foundation of knowledge and inventions laid out by earlier

innovators (Nelson and Winter 1982, Scotchmer 1991, Caballero and Jaffe 1993), and many

innovations today are remarkably complex and embody high levels of sophistication. For

example, 4G-LTE or 5G wireless telecommunications protocols employ fl exible and spectrally

efficient radio-link technologies (Larmo et al. 2009, Agyapong et al. 2014, Gupta and Jha 2015)

that require highly trained radio engineers many years to develop. Yet, once they are embodied

in semiconductor chip sets, smartphone manufacturers can incorporate them within a single

design cycle, usually lasting less than a year. Innovations like smartphones that rely on these

technologies, in turn, have become platforms upon which a multitude of other new products and

services are built, and their speed of adoption is much faster than would be expected if firms had

to develop in-depth understanding and working knowledge of the underlying computing and

communications technologies before being able to replicate them. Innovators, thus, are able to

shortcut the requisite organizational learning and capability building that faced the pioneers, and

this fosters broad and faster diffusion of new technologies. This paper seeks to illuminate a

mechanism for this knowledge transfer and bridge a gap in the management and innovation

literature by arguing that increasing the level of abstraction can be framed as a deliberate strategy

that innovators use to enable the rapid adoption of new technologies and facilitate recombinant

innovation.

The innovation literature is rich with the analysis of learning and knowledge transfer. Central

to the adoption and use of new technologies is the development of an understanding of the

technical foundations coupled with the ability to internalize and use the knowledge embedded

within them (Cohen and Levinthal 1990). Knowledge transfer is a central competitive dimension

of what firms do (Nelson and Winter 1982, Kogut and Zander 1992, Zander and Kogut 1995,

Schumpeter 2013) and contributes substantially to organizational performance (Epple et al. 1996,

Argote and Ingram 2000). Such transfers represent efforts to create partial or exact replicas of

complex practices (Lippman and Rumelt 1982) and often entail understanding a web of

relationships that connect specifi c resources (Szulanski 2000). Difficulties experienced in such

transfers connote stickiness (von Hippel 1994, Szulanski 1996), which drives the often-heavy

resource costs associated with such transfers (Teece 1981).

The codification of such knowledge is a prerequisite to its effective use. This involves the

transformation of experiences and information into some kind of symbolic and easily

communicable artifacts, such as blueprints, images, formulas, or computer instructions (Teece

1981). To the extent that the knowledge can be codified, which is the process of converting that

knowledge into messages that can be processed as information, less of it remains idiosyncratic to

a person or a few people, and it is transformed into something that can be communicated at low

costs (Cowan et al. 2000). The degree of codifi cation and how easily capabilities are taught has a

significant influence on the speed of transfer (Teece 1981, Zander and Kogut 1995). Yet, as legions

of innovators employ many new complex technologies in their products, they seem to have

bypassed the traditional need to understand the codification. This is where abstraction comes in.

Abstraction

Abstraction is a concept that has been extensively used in fields outside of management

research. Its use in philosophy began with Locke in 1706, who described it as a process of

separating ideas from the spatial or temporal qualities of particular things (Colburn and Shute

2007). In mathematics, abstraction is used as a verb and signifies the extraction of the underlying

patterns and structures of a concept, while removing dependence on physical objects to which

they might have been connected, leading to a generalization. In the cognitive sciences, it has been

more associated with the separation of generalities from specific facts (Ericsson et al. 1993,

Ohlsson and Lehtunen 1997).

In examining the adoption of new technologies, the usage of the term in engineering is most

helpful. In software development and engineering design, producing an abstraction means

identifying a pattern, naming and defining it, analyzing it, finding ways to specify it, and

providing a way to reuse it (Shaw 1989). It is a process of generalization, deciding what details

need to be highlighted and which details can be ignored in order to retain and make visible only

the key relevant information for performing a particular task (Wing 2008). Abstraction in software

development utilizes the concept of layers: the layer of interest and the layer below. Well-defined

interfaces between layers then enable the building of more complex systems (Wing 2008).

In the technology-innovation literature, abstraction has been broadened to encompass the

division of innovative labor, wherein the process enables the representation of phenomena using

a limited number of “ essential” elements, rather than in terms of concrete features (Arora and

Gambardella 1994), providing a mechanism to generalize a thought process for wider application.

If we think of a technological innovation as a black box, an abstraction characterizes the transfer

function or behavior of the system contained within, along with all the inputs and outputs that

would be needed in order to completely describe and use its functionality. In this context, the

abstraction would not necessarily render explicit the inner workings of the black box. In contrast,

codification would be concerned with how it worked, the internal mechanisms or mechanics, the

core technological underpinnings, and how it delivered the transfer function.

Abstraction can be a useful framing in understanding innovation and the adoption of complex

technologies. Providers of advanced technologies package them often as a demarcated bundle

with complete specifications and behavioral models that make it easy to incorporate as a building

block for a more complex system. By economizing on the information that the mind has to

respond to in order to use the technology (Teece 1981), it enhances the trialability of a new

technology (Rogers 1995) and lowers the barriers and reduces the costs of adoption, increasing

the speed of diffusion (Hall 2004).

The concept of modularity is central to abstraction. Modularizing a system creates a

partitioning of functionality across component modules (Baldwin and Clark 2000). Specifying a

system’ s architecture, how functionality is divided across modules, and the interfaces that

govern how the component parts interact (Baldwin and Clark 2006) creates building blocks that

each embody some subset of overall system behavior. Several authors have pointed out that when

complexity reaches a certain threshold, it can be isolated by defining a module as a separate

abstraction with a simple interface (Baldwin and Clark 2000, Ethiraj and Levinthal 2004).

Modularity can promote specialization and more facile innovation, and, in this way, some

modules can be viewed as abstractions. Yet not every modular partitioning leads to components

that are abstractions in the general sense. If the partitioning is driven by an effort to decouple

system components and distribute development efforts, individual modules may not have

standalone value for recombination. Abstractions are intended to stand alone and are intended

to be used in unpredictable future recombination.

Raising the Level of Abstraction

 Our central proposition is that raising the level of abstraction can be an effective strategy for

facilitating and increasing the pace of adoption of a complex technology. This encompasses

increasing the scope of the innovation, often by incorporating more of the dependencies or

integrating complements so that a user is relieved of the task of orchestrating all of the necessary

pieces. In so doing, it increases product development productivity by reducing the need for deep

understanding of implementation details in exchange for limiting the ultimate degrees of design

freedom.

This is a concept that is well known from the earliest days of the development of computer

software. Digital computers carry out sequences of arithmetic and logical operations that are

controlled by binary data bits (ones and zeros). Machine-language programs use these binary

data bits to tell a computer precisely what to do at each step, but the instructions are extremely

primitive and only do things like move a number between storage locations or perform simple

arithmetic or logical operations. If programmers had to worry about this level of detail, they

would find it difficult to rise above the minutia and think about the big picture (Návrat 1994,

Návrat and Filkorn 2005). Computer scientists eased their task by developing symbolic “

assembly languages.” Assembly language programs were the earliest “ higher-level language”

and were symbolic representations that were translated into the ones and zeros that the computer

actually uses by a program called an assembler. They introduced a layer that was the next higher

level of abstraction. They were followed by increasingly higher-level languages, such as

FORTRAN, which stood for formula translator, developed by John Backus and a small team at

IBM from 1954 to 1957 (Backus 1979). This was a revolutionary innovation because it enabled

programmers to express what they wanted to do in a more easily understood form, like “c = a +

b .” The programmer ran a “ compiler” to translate the high-level language program into the

primitive machine instructions.

More sophisticated languages, such as C++ and Java, operate at progressively higher levels

of abstraction, helping designers to segregate the concepts that a programmer wants to

implement from its instances of implementation. These levels are layers that facilitate the

introduction of new unforeseen hardware below the language layer, or new unforeseen

applications above the language layer. Abstraction suppresses the details and simplifies the

understanding of the result (Shaw 1989). Over time, abstraction has been associated with

language constructs; specification techniques; program structures, such as algorithms and data

types; and strategies for modular decomposition. Software developers have been able to focus on

high-level system architectures and less and less on the details of implementation.

In computer software, abstraction today is looked upon as the isolation of a software

subsystem or module of a larger system into a reusable component. Development of abstraction

techniques has been a major source of improvement in programming practices (Shaw 1989). Some

even argue that entire history of software engineering can be characterized as progressively rising

levels of abstraction (Aaronson 2006). This has been evident in the development of new computer

languages, platforms, methods, and tools. Today, reusable components and software-container

systems play a critical role in software innovation.

The same concept has also been applied to hardware, but in a more limited way. Early

computer systems required programmers to understand how each piece of attached hardware,

such as a printer, worked. This became a significant burden as the variety of devices proliferated.

Software developers solved this problem by adding a layer of abstraction, which hid or

encapsulated knowledge of the device within a module. For example, Microsoft introduced a

hardware abstraction layer into its Windows operating system to insulate software writers from

the wide range of hardware that was developed by third parties. Programmers then wrote

standardized instructions, such as for printing a page, and sent them to the operating system. The

operating system, in turn, communicated with the device, using a “device driver.” Device-

specific knowledge was not communicated to other parts of the system, which also enabled

independent development of modules and better comprehensibility (Parnas 1972). The physical

printer plus its associated driver abstracted the printing function from the point of view of the

operating system software. More importantly, the users of the abstraction were relieved from

needing to know the underlying mechanism of how the device functioned.

These methods have spread to hardware at the microchip level as well, with hardware

compilers that can implement component descriptions into physical designs of circuit

components, along with associated simulation and modeling tools that enable designers to work

at a high level (see, for example, Van Rompaey et al. 1996 and Baghdadi et al. 2001).

Raising the level of abstraction can describe the strategy behind facilitating the adoption of

complex technologies, especially those that rely on cumulative innovation (Hargadon and Sutton

1997) and recombination. Innovation requires a broad search for information and recombination

of different kinds of knowledge (Nelson and Winter 1982, Levinthal and March 1993). When new

technologies emerge, they often face challenges in adoption (Anderson and Tushman 1990),

especially by incumbent firms (Nelson and Winter 1982, Levinthal and March 1993, Tushman and

O’ Reilly 1996), as firms have to first recognize their value and then assimilate them (Cohen and

Levinthal 1990). The recombination of distant or diverse knowledge is essential for breakthroughs

because research confined to narrow domains might lead to intellectual lock-in and foster

incremental innovation (Gavetti and Levinthal 2000, Fleming 2001, Ethiraj and Levinthal 2004,

Kaplan and Vakili 2015). Thus, bridging distant or diverse knowledge is important to enhancing

creativity (Hargadon and Sutton 1997, Audia and Goncalo 2007, Kaplan and Vakili 2015), and the

use of general and abstract knowledge in innovation fosters the division of innovative labor

(Arora and Gambardella 1994). Explicitly seeking to raise the level of abstraction should facilitate

easier incorporation and reduce barriers to adoption.

Some examples are instructive. Many electronic device manufacturers raise the level of

abstraction on a complex new technology in order to speed its incorporation into their customers’

designs. They do this by creating and publishing “ reference designs.” Reference designs offer

complete example designs, which include wiring schematics, electronic computer-aided design

and computer-aided manufacturing files intended to be used as direct input to manufacturing

systems, and software that could be customized with a customer’s logo and branding.

Implementation details are hidden, even though they are critical to the underlying device’ s

proper functioning. The only things revealed to the adopter are interface details and the

abstraction’s functional behavior, a black box whose inputs, outputs, and behaviors are fully

characterized. Compared with doing their own de novo design, a reference design spares users

from having to understand implementation methods and details and makes the adoption of a

complex new technology much easier.

A historically important example was how Intel Corporation sped the adoption of next-

generation chip technology in personal computers. In 1995, the company was experiencing

difficulty getting its PC customers to keep pace with its new microprocessor releases. It wanted

companies like Dell and Compaq to offer models that incorporated its latest chips as soon as they

became available, but found they were lagging because of the delays in absorbing new design

information. It solved the problem by providing its “ATX” reference designs, which were

matched to its latest CPU chips as soon as they became available. All of the complex electrical

signaling and timing were hidden— PC manufacturers had no need to understand the

implementation details. The reference designs abstracted all of the electrical signaling needed to

assemble and mass-produce the heart of a PC, making the embodied microprocessor innovations

simpler to recombine. The reference design included the locations of mounting holes and

specification for every electrical and signal connection. Designers of products like industrial

controllers for machine tools, cash registers, and other devices that needed inexpensive

computation and user interaction could recombine their own innovations with the ATX

abstraction of a basic computing engine that included provisions for a simple user interface and

connectivity. The ATX innovation enabled a huge wave of new market entrants with no prior

experience in the technology, including companies like Lenovo.

Innovators also use abstractions as platforms that promote recombination. A smartphone is

an example of a platform that abstracts Internet connectivity, computing power, and a

touchscreen-display user interface in a battery-operated package. The abstraction includes

application programming interfaces (APIs) used in an associated software-development kit, for

example, to provide touchscreen interface actions or camera image capture. The staggeringly

complex details of implementation are hidden. Although designing it as a building block for

others to use might not have been the original objective, it facilitates more efficient cumulative

innovation and recombination. New personal medical test devices use smartphones as Internet

edge devices to log and send data. They are used as subsystems in infrared cameras,

measurement tools, and other applications that need generic computing and communications

functionality.

Abstractions can extend beyond hardware and software to the provision of services. Cloud

computing services such as Amazon Web Services (AWS) raise the level of abstraction for generic

connected computing and communications, enabling innovators to purchase networked

computing capability and capacity on demand without having to be concerned with the details

of the hardware or software provisioning. Traditionally, the provisioning is performed by a large

IT infrastructure organization, but AWS abstracts all of those complements and makes them

invisible, making adoption easier.

Progressively higher levels of abstraction are often visible in tiered product innovations.

Google Maps is a consumer-oriented geographic information system. After acquiring the original

software, Google converted it into a web application (app) with a JavaScript API that allowed

embedding in third-party websites. Google Maps abstracted real-time geolocation information,

including complex technologies like traffic-sensing, and enabled recombination with services like

the ride-sharing offerings of Uber, Lyft, and others. In the next higher layer, the Uber app

delivered an innovative new service to consumers, but also raised the level of abstraction by

offering a ride-request button that others could incorporate into their own new services, for

example, to provide food delivery. Uber marketed this as a way to build on-demand delivery

solutions for local retailers and online shops. The “Ride there with Uber” button brought

everything in the Uber application— fare estimates, a pick-up time estimate, and location— into

the new service with just a few lines of code. Built on top of Google Maps, which, in turn, was

built on top of smartphone platforms, Uber abstracted a modular ride service for firms like

OpenTable, Starbucks, and United Airlines to recombine delivery services within their own

service apps at a next higher tier.

Innovators can use a strategy of raising the level of abstraction to enhance network effects on

their platforms by bringing more parties onboard. Voice assistants, such as the Google Assistant

or Amazon Alexa, speed the incorporation of voice recognition into new services. The Google

Assistant provides a voice user design interface and framework for conversational design, and

Amazon’ s Alexa offers access to specific functional groups, like a video-skill API or music-skill

API. Both of these abstractions package voice-recognition functionality in a way that allows

others to easily build this functionality into their products without any of the formidable research

and development capabilities needed to commercialize the core speech-recognition technology.

This encourages more parties on all sides to join the platform.

Higher-Level Abstractions Replace Lower-Level Abstractions

Higher-level abstractions that simplify or further reduce the need for technical expertise often

replace lower-level ones in the market and can shift the dominant design paradigm. An example

is the adoption of software container systems. An important innovation in the software operating

systems for computers was the virtual machine, a programming environment that abstracted

server hardware and made it appear as if it was a dedicated machine from the point of view of

an application developer. Everything that was necessary to run the application was contained

within the virtual machine, and multiple instances of the virtual machine could run on a single

hardware computer system. This is now a mature technology and is available from a number of

vendors.

Software containers like Docker virtualize the operating system running on a computer and

make it appear like the operating system and all dependencies required to run a program are

within a container image. This is a higher level of abstraction than the virtual machine, and it has

that advantage that only one copy of the operating system is needed, improving program-

execution efficiency, as well as speed of deployment. Software containers have their roots in

primitive constructs like the chroot system call, which was introduced in 1979, and FreeBSD Jails,

a way of partitioning the FreeBSD operating system into independent systems introduced in 2000

(Hope 2002). This was followed by process containers introduced by Google in 2006 (Menage

2007), but even those required a high level of skill to implement. Docker emphasized ease of use

and delivered a higher level and more complete abstraction that offered an ecosystem for

container management. Following its introduction in 2013, its popularity took off (Merkel 2014,

Rubens 2017). As a higher-level operating system abstraction, it has started to substantially

replaced virtual machines in new deployments. A 2018 survey of 576 IT industry leaders reported

that 11.98% of enterprises had deployed them and 47.05% planned to (Diamanti 2018). Google

Trends, which reports relative search interest, shows a clear displacement of “ virtual machines”

by “ Docker” over a 15-year period as software implementers switched to the higher-level

abstraction.

Case Study: Reducing Resources Required to Apply New Technologies

We examined the Taiwanese company MediaTek, who raised the level of abstraction for 2.5G

mobile handset makers with a design package that included everything needed to assemble the

hardware and software (Shih et al. 2010). On the hardware side, it provided a reference design in

electronic form so that customers could easily modify them. Customers could also choose to use

them directly without modification. In that case, all they had to do was add a plastic case, and

they would be able to offer a complete, albeit basic, product.

On the software side, the company included a proprietary operating system, a man– machine

interface code base, and key design tools. MediaTek’s customers could use these to customize the

software that ran on the handset and quickly produce a custom look and feel with tailored

functionality, often over the course of a lunch break, and then could download it into the handset.

Handsets also incorporated other complementary components that the company did not supply.

The company did extensive testing and qualification of components and published the data for

its customers. For example, MediaTek did not make the camera modules for phones, but, rather,

it tested modules that were available on the market and optimized drivers and software for them.

Color rendition and image clarity were very dependent on the software used with them, so

MediaTek invested extensively in R&D and testing to ensure that its designs could produce good

results for its customers who were far less skilled. This resulted in a design robustness that could

survive the customers who chose to use inexpensive lenses instead of better quality ones, or

customers who wanted to take design or engineering shortcuts.

Although traditional contemporary feature phone firms, such as Nokia and Motorola,

employed hundreds of engineers to develop and produce a product over the course of a nine-

month product cycle, a typical MediaTek customer design team might have as few as 10

employees and could produce a new feature phone in several weeks. The company’s abstraction

efforts led to the emergence of nearly a thousand small phone makers in the Shenzhen, China

area.

MediaTek was particularly interesting because its company strategy was based on raising the

level of abstraction in different consumer electronic device markets. Prior to its work with mobile-

phone handsets, it had done the same thing by reducing the electronics for making a CD-ROM to

a single silicon chip, followed by doing the same thing for DVDROMs, DVD/Blu-Ray players,

and television sets. In each of these product categories, the company enabled a large number of

new entrants.

Strategic Implications

The innovation model described here provides one explanation for the rapid uptake of

sophisticated new technologies. An innovator can raise the level of abstraction of a technology to

make it easier to incorporate and economize on the know-how, both tacit and explicit, that is

required to use it. This frame also raises some implications as well as questions for further

research.

For firms, raising the level of abstraction is away to lower the barriers to adoption of a new

technology, as exemplified by the use of reference designs. The MediaTek example highlighted

both benefits and consequences of the approach. By making its technology more accessible with

the objective of increasing adoption, it commoditized products that incorporated it. Interestingly,

Intel produced a similar outcome with its ATX reference designs, and, in both cases, the

promulgators retained a key value-extraction mechanism in the form of the semiconductor chip

at the center of their respective platforms, and both derived considerable benefits. Thanks to

network effects associated with usage of the Intel platform, ATX became the dominant design for

personal computers. MediaTek, on the other hand, faced competition from other chip firms,

including Qualcomm and Samsung, so although it was able to sell over 350 million chipsets in a

year, the main effect was to commoditize lower tier feature phones on which producers made

very little profit.

For firms who operate matching platforms, abstracting a service, such as the “ Ride there with

Uber” example, can simplify adoption and bring more users to the service provided on one of

the platform sides. Again, the focus is on how to encourage other innovators to build on the

technology or service by making it easy to incorporate.

Innovators operating at the higher levels of abstraction don’t have detailed understanding of

inner workings at lower levels in the cumulative innovation pyramid. Thus, although raising

levels of abstraction lies at the heart of economizing on bounded rationality, innovation could

become more limited beneath the abstraction layer. We asked a senior manager at Microsoft how

many of her employees actually knew how to write a compiler, something that was once a rite of

passage for computer science undergraduates. Her answer was that none of her new hires did,

and if anyone needed to know how, they had to train that individual. When there is no longer the

detailed understanding of the base technologies and how to implement them de novo, there is

little incentive to go back and revisit the technology that the abstraction is built upon. This can

become an issue when the balance point in core system design tradeoffs changes because of a new

application type that might disproportionally favor use of one resource over another. This is quite

evident today in the evolution of domain-specific microarchitectures for new application areas

like machine learning. One author commented:

It adds a dimension that most of the industry is not used to. We are not really being

taught that kind of thing in school, and it’s not something that the industry has decades

of experience with. So it is not ingrained in the programmers. (Bailey 2020)

Said differently, a higher-level abstraction reinforces dominant designs to the exclusion of

new approaches (Anderson and Tushman 1990). The commercial success of the ATX

motherboard abstraction promulgated by Intel stifled innovation in the PC system architecture

for many years. ATX motherboards achieved de facto standardization, and the very high volumes

and low market pricing made it difficult for competitors to reap any profit. This channeled

innovations primarily into cost reductions and cosmetics, with little architectural innovation.

Intel competitor AMD achieved some success by replicating the external interfaces of ATX in its

own version of the reference design and then changed the memory controller architecture inside

to elicit better performance. But even then, it had trouble delivering consistent market success.

Computer architects have long pointed out that memory-system performance was crucial to

better overall system performance, but the market weight of ATX stifled innovation within the

confines of the abstraction. We discussed this with leaders of the Taiwanese computer industry

and memory chip manufacturers who recognized the opportunity for relieving a system-

performance bottleneck, but they argued that the economics were overwhelmingly against

making significant changes. It was only the emergence of hyperscale datacenters and their high

consumption of computer systems that provided the economic motivation for firms like Google,

Amazon, and Facebook to revisit the design assumptions and make fundamental architectural

changes that were more suited to their own specific usage cases (Thusoo et al. 2010, Hazelwood

et al. 2018).

In the same vein, the Intel ATX example also raise questions about technological learning

more broadly. Researchers who have studied learning by example point out that it is a well-

documented process for cognitive-skill acquisition. People gain a deep understanding when they

can follow a worked-out example (Renkl 2005); a reference design is essentially this. For novices

who don’t have deep prior exposure to the material, an absorption process that relies on studying

worked examples is more effective for learning, as well as more efficient with less investment of

time and effort during acquisition (Atkinson, et al. 2000), and is a more efficient approach than

trial and error (Sweller and Cooper 1985, Cooper and Sweller 1987). But does reliance on

abstractions confine learning to narrower domains? Their more widespread use might explain

the increasing complexity and deeper tiering found in modern supply chains. Our study of the

Chinese motorcycle industry found that firms who used reference designs had great difficulty

innovating beyond superficial attributes like paint schemes, shapes of the handlebars, or shape

of the gas tank (Shih and Dai 2010). Firms who offer successful abstractions reduce incentives to

invest in their layer of a value network, which can provide an ancillary benefit of protecting tacit

or proprietary knowledge. Their customers tend to maintain focused expertise above the

abstraction layer with a correspondingly greater reliance on suppliers below them.

We think that raising the level of abstraction by a firm as either an implicit or explicit strategy

provides a useful lens that helps explain the rapid adoption of some new advanced technologies

as well as their speed of diffusion. It complements the established body of literature on

modularity by adding a temporal element and the notion of higher levels, at which an innovator

interfaces. It also raises questions about the stratification of innovative activities, as the pressure

from lowered entry barriers relieves innovators from the need to develop an understanding of

the technical foundations that might limit more basic innovation down the road.

References

Aaronson L (2006) Q&A with Grady Booch, IEEE Spectrum, https://spectrum.ieee.org/geek-

life/profiles/qa-with-grady-booch.

Agyapong PK, Iwamura M, Staehle D, Kiess W, Benjebbour A (2014) Design considerations for a

5G network architecture. IEEE Communications Magazine, 52(11), 65-75.

Anderson P, Tushman, M (1990) Technological discontinuities and dominant designs: A cyclical

model of technological change. Administrative Science Quarterly, 604-633.

Argote L, Ingram P (2000) “Knowledge transfer: A basis for competitive advantage in

firms,” Organizational Behavior and Human Decision Processes, 82(1), 150-169.

Arora A, Gambardella A (1994) “The changing technology of technological change: general and

abstract knowledge and the division of innovative labour.” Research Policy, 23(5), 523-532.

Atkinson R, Derry S, Renkl A, Wortham D (2000) Learning from examples: Instructional

principles from the worked examples research. Review of educational Research, 70(2), 181-

214.

Audia, P, Goncalo J (2007) Past success and creativity over time: A study of inventors in the hard

disk drive industry. Management Science, 53(1), 1-15.

Backus, J (1979) The history of Fortran i, ii and iii. Ann. Hist. Comput. 1(1):21–37.

Baghdadi A, Lyonnard D, Zergainoh N, Jerraya A (2001) An efficient architecture model for

systematic design of application-specific multiprocessor SoC. Proceedings Design,

Automation and Test in Europe. Conference and Exhibition 2001 (IEEE, New York), 55-62

Bailey, B (2020) An Increasingly Complicated Relationship with Memory, Semiconductor

Engineering, https://semiengineering.com/an-increasingly-complicated-relationship-

with-memory/#comment-326042

Baldwin C, Clark K (2000) Design rules: The power of modularity (Vol. 1). MIT Press.

Baldwin C, Clark K (2006) Modularity in the design of complex engineering systems. In Complex

engineered systems. 175-205. Springer, Berlin, Heidelberg.

Caballero R, Jaffe A (1993) How high are the giants' shoulders: An empirical assessment of

knowledge spillovers and creative destruction in a model of economic growth. NBER

Macroeconomics Annual, 8, 15-74.

Colburn, Timothy, and Gary Shute (2007) Abstraction in computer science. Minds and

Machines 17(2), 169-184.

Cohen W, Levinthal D (1990) Absorptive capacity: A new perspective on learning and

innovation. Administrative Science Quarterly, 128-152.

Cooper G, Sweller J (1987) Effects of schema acquisition and rule automation on mathematical

problem-solving transfer. Journal of Educational Psychology, 79(4), 347.

Cowan, R, David P, Foray D (2000) The explicit economics of knowledge codification and

tacitness. Industrial and Corporate Change, 9(2), 211-253.

Diamanti (2018) Container Adoption Benchmark Survey, Diamanti.com, https://diamanti.com/

wp-content/uploads/2018/07/WP_Diamanti_End-User_Survey_072818.pdf

Epple D, Argote L, Murphy K (1996) An empirical investigation of the microstructure of

knowledge acquisition and transfer through learning by doing. Operations Research, 44(1),

77-86.

Ericsson, K. Anders, Ralf T. Krampe, and Clemens Tesch-Römer (1993) "The role of deliberate

practice in the acquisition of expert performance." Psychological review 100(3), 363.

Ethiraj S, Levinthal D (2004) Modularity and innovation in complex systems. Management

Science 50(2), 159-173.

Fleming L (2001) Recombinant uncertainty in technological search. Management Science, 47(1),

117-132.

Gavetti G, Levinthal D (2000) Looking forward and looking backward: Cognitive and experiential

search. Administrative Science Quarterly, 45(1), 113-137.

Gupta A, Jha R (2015) A survey of 5G network: Architecture and emerging technologies. IEEE

Access, 3, 1206-1232.

Hall B, (2004) Innovation and diffusion. No. w10212. National Bureau of Economic Research

Hargadon A, Sutton R (1997) Technology brokering and innovation in a product development

firm. Administrative Science Quarterly, 716-749.

Hazelwood K, Bird S, Brooks D, Chintala S, Diril U, Dzhulgakov D, Law J (2018, February)

Applied machine learning at Facebook: A datacenter infrastructure perspective. In 2018

IEEE International Symposium on High Performance Computer Architecture (HPCA), IEEE,

620-629.

Hope P (2002) Using Jails in FreeBSD for fun and profit. login: The Magazine of USENIX &

SAGE, 27(3).

Kaplan, S, Vakili K (2015) The double‐edged sword of recombination in breakthrough

innovation. Strategic Management Journal, 36(10), 1435-1457.

Kogut B, Zander U (1992) Knowledge of the firm, combinative capabilities, and the replication of

technology. Organization science, 3(3), 383-397.

Larmo A., Lindström M, Meyer M, Pelletier G, Torsner J, Wiemann H. (2009) The LTE link-layer

design. IEEE Communications magazine, 47(4), 52-59.

Levinthal D, March J (1993). The myopia of learning. Strategic Management Journal, 14(S2), 95-112.

Lippman S, Rumelt R (1982) Uncertain imitability: An analysis of interfirm differences in

efficiency under competition. The Bell Journal of Economics, 418-438.

Menage P (2007) Adding generic process containers to the linux kernel. In Proceedings of the Linux

symposium, 2, 45-57.

Merkel D (2014) Docker: lightweight Linux Containers for Consistent Development and

Deployment. Linux Journal, 239, 2.

Návrat P (1994) Hierarchies of programming concepts: abstraction, generality, and beyond. ACM

SIGCSE Bulletin, 26(3), 17-21.

Návrat P, Filkorn R (2005) A Note on the Role of Abstraction and Generality in Software

Development. Journal of Computer Science, 1(1), 98-102.

Nelson R, Winter S (1982) An evolutionary theory of economic change, 929-964.

Ohlsson Stellan, Lehtinen E (1997). Abstraction and the acquisition of complex ideas. International

Journal of Educational Research, 27(1), 37-48.

Parnas D (1972) On the criteria to be used in decomposing systems into modules. Communications

of the ACM, 15(12), 1053-1058.

Renkl A. (2005) The worked-out-example principle in multimedia learning. The Cambridge

handbook of multimedia learning, 229-245.

Rogers E (1995) Diffusion of Innovations, Simon and Schuster.

Romer P (1990) Endogenous technological change. Journal of Political Economy, 98(5, Part 2), S71-

S102.

Rubens P (2017) What are containers and why do you need them?. CIO. URL: https://www. cio.

com/article/2924995/software/what-are-containers-and-why-do-you-needthem. html.

Schumpeter JA (2013) The process of creative destruction. Capitalism, Socialism and Democracy

(Routledge Taylor & Francis e-Books, Milton Park, Abingdon, UK), 81–85.

Scotchmer S (1991) Standing on the shoulders of giants: cumulative research and the patent

law. Journal of Economic Perspectives, 5(1), 29-41.

Shaw M (1989) Larger scale systems require higher-level abstractions. ACM Sigsoft Software

Engineering Notes, 14(3), 143-146.

Shih W, Chien C, Wang J (2010), “Shanzhai! MediaTek and the White Box Handset Market,”

Harvard Business School Case no. 610-081, Harvard Business Publishing, Boston, MA.

Shih W, Dai N (2010), “From Imitation to Innovation: Zongshen Industrial Group,” Harvard

Business School Case no. 610-057, Harvard Business Publishing, Boston, MA.

Sweller J, Cooper G (1985) The use of worked examples as a substitute for problem solving in

learning algebra. Cognition and Instruction, 2(1), 59-89.

Szulanski G (1996) Exploring internal stickiness: Impediments to the transfer of best practice

within the firm. Strategic Management Journal, 17(S2), 27-43.

Szulanski G (2000) The process of knowledge transfer: A diachronic analysis of

stickiness. Organizational behavior and human decision processes, 82(1), 9-27.

Teece D (1981) The market for know-how and the efficient international transfer of

technology. The Annals of the American Academy of Political and Social Science, 458(1), 81-96.

Thusoo A, Shao Z, Anthony S, Borthakur D, Jain N, Sen Sarma J, Liu H (2010) Data warehousing

and analytics infrastructure at facebook. In Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data, 1013-1020.

Tushman M, O'Reilly III C (1996) Ambidextrous organizations: Managing evolutionary and

revolutionary change. California Management Review, 38(4), 8-29.

Van Rompaey K, Verkest D, Bolsens I, De Man H (1996) CoWare-a design environment for

heterogeneous hardware/software systems. Proceedings EURO-DAC'96. European Design

Automation Conference with EURO-VHDL'96 and Exhibition, IEEE, 252-257

Von Hippel E (1994) “Sticky information” and the locus of problem solving: implications for

innovation. Management Science, 40(4), 429-439.

Wing J (2008) Computational thinking and thinking about computing, Philosophical Transactions

of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 366(1881),

3717-3725.

Zander U, Kogut B (1995) Knowledge and the speed of the transfer and imitation of

organizational capabilities: An empirical test. Organization Science, 6(1), 76-92.

	Increasing the Level of Abstraction as a Strategy for Accelerating the Adoption of Complex Technologies
	Abstraction
	Raising the Level of Abstraction
	Higher-Level Abstractions Replace Lower-Level Abstractions
	Case Study: Reducing Resources Required to Apply New Technologies
	Strategic Implications
	References

