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Abstract. Many new technologies are complex and embody high levels of technical 

sophistication, and applying them should require significant knowledge and experience. Yet, the 

rapid adoption and incorporation of these technologies into other innovations seems inconsistent 

with the expertise needed to make them work. In this paper, we propose increasing levels of 

abstraction as a strategy for speeding the adoption of new technologies. Higher-level abstractions 

package complexity in ways that makes them easier to understand and recombine, and they 

decrease the resources needed by firms to deploy sophisticated technical know-how. Increasing 

the level of abstraction is a way to push forward the innovative frontier by making such difficult-

to-use technologies readily accessible to other innovators. Although this framing has been used 

in engineering and software development to describe modular encapsulation and cumulative 

innovation, we propose its use in the management literature to describe more broadly the uptake 

of new technologies and their facile recombination. This framing casts a different light on 

cumulative innovation and exposes new managerial questions to explore. 

 

 

Technological change lies at the heart of economic growth (Romer 1990), and we live in an era 

in which many new technologies are incorporated into products and services at an extraordinary 

pace. New technologies build on a foundation of knowledge and inventions laid out by earlier 

innovators (Nelson and Winter 1982, Scotchmer 1991, Caballero and Jaffe 1993), and many 

innovations today are remarkably complex and embody high levels of sophistication. For 

example, 4G-LTE or 5G wireless telecommunications protocols employ fl exible and spectrally 

efficient radio-link technologies (Larmo et al. 2009, Agyapong et al. 2014, Gupta and Jha 2015) 

that require highly trained radio engineers many years to develop. Yet, once they are embodied 

in semiconductor chip sets, smartphone manufacturers can incorporate them within a single 



design cycle, usually lasting less than a year. Innovations like smartphones that rely on these 

technologies, in turn, have become platforms upon which a multitude of other new products and 

services are built, and their speed of adoption is much faster than would be expected if firms had 

to develop in-depth understanding and working knowledge of the underlying computing and 

communications technologies before being able to replicate them. Innovators, thus, are able to 

shortcut the requisite organizational learning and capability building that faced the pioneers, and 

this fosters broad and faster diffusion of new technologies. This paper seeks to illuminate a 

mechanism for this knowledge transfer and bridge a gap in the management and innovation 

literature by arguing that increasing the level of abstraction can be framed as a deliberate strategy 

that innovators use to enable the rapid adoption of new technologies and facilitate recombinant 

innovation. 

The innovation literature is rich with the analysis of learning and knowledge transfer. Central 

to the adoption and use of new technologies is the development of an understanding of the 

technical foundations coupled with the ability to internalize and use the knowledge embedded 

within them (Cohen and Levinthal 1990). Knowledge transfer is a central competitive dimension 

of what firms do (Nelson and Winter 1982, Kogut and Zander 1992, Zander and Kogut 1995, 

Schumpeter 2013) and contributes substantially to organizational performance (Epple et al. 1996, 

Argote and Ingram 2000). Such transfers represent efforts to create partial or exact replicas of 

complex practices (Lippman and Rumelt 1982) and often entail understanding a web of 

relationships that connect specifi c resources (Szulanski 2000). Difficulties experienced in such 

transfers connote stickiness (von Hippel 1994, Szulanski 1996), which drives the often-heavy 

resource costs associated with such transfers (Teece 1981). 

The codification of such knowledge is a prerequisite to its effective use. This involves the 

transformation of experiences and information into some kind of symbolic and easily 

communicable artifacts, such as blueprints, images, formulas, or computer instructions (Teece 

1981). To the extent that the knowledge can be codified, which is the process of converting that 

knowledge into messages that can be processed as information, less of it remains idiosyncratic to 

a person or a few people, and it is transformed into something that can be communicated at low 

costs (Cowan et al. 2000). The degree of codifi cation and how easily capabilities are taught has a 

significant influence on the speed of transfer (Teece 1981, Zander and Kogut 1995). Yet, as legions 



of innovators employ many new complex technologies in their products, they seem to have 

bypassed the traditional need to understand the codification. This is where abstraction comes in. 

Abstraction 

Abstraction is a concept that has been extensively used in fields outside of management 

research. Its use in philosophy began with Locke in 1706, who described it as a process of 

separating ideas from the spatial or temporal qualities of particular things (Colburn and Shute 

2007). In mathematics, abstraction is used as a verb and signifies the extraction of the underlying 

patterns and structures of a concept, while removing dependence on physical objects to which 

they might have been connected, leading to a generalization. In the cognitive sciences, it has been 

more associated with the separation of generalities from specific facts (Ericsson et al. 1993, 

Ohlsson and Lehtunen 1997).  

In examining the adoption of new technologies, the usage of the term in engineering is most 

helpful. In software development and engineering design, producing an abstraction means 

identifying a pattern, naming and defining it, analyzing it, finding ways to specify it, and 

providing a way to reuse it (Shaw 1989). It is a process of generalization, deciding what details 

need to be highlighted and which details can be ignored in order to retain and make visible only 

the key relevant information for performing a particular task (Wing 2008). Abstraction in software 

development utilizes the concept of layers: the layer of interest and the layer below. Well-defined 

interfaces between layers then enable the building of more complex systems (Wing 2008). 

In the technology-innovation literature, abstraction has been broadened to encompass the 

division of innovative labor, wherein the process enables the representation of phenomena using 

a limited number of “ essential”  elements, rather than in terms of concrete features (Arora and 

Gambardella 1994), providing a mechanism to generalize a thought process for wider application. 

If we think of a technological innovation as a black box, an abstraction characterizes the transfer 

function or behavior of the system contained within, along with all the inputs and outputs that 

would be needed in order to completely describe and use its functionality. In this context, the 

abstraction would not necessarily render explicit the inner workings of the black box. In contrast, 

codification would be concerned with how it worked, the internal mechanisms or mechanics, the 

core technological underpinnings, and how it delivered the transfer function. 



Abstraction can be a useful framing in understanding innovation and the adoption of complex 

technologies. Providers of advanced technologies package them often as a demarcated bundle 

with complete specifications and behavioral models that make it easy to incorporate as a building 

block for a more complex system. By economizing on the information that the mind has to 

respond to in order to use the technology (Teece 1981), it enhances the trialability of a new 

technology (Rogers 1995) and lowers the barriers and reduces the costs of adoption, increasing 

the speed of diffusion (Hall 2004). 

The concept of modularity is central to abstraction. Modularizing a system creates a 

partitioning of functionality across component modules (Baldwin and Clark 2000). Specifying a 

system’ s architecture, how functionality is divided across modules, and the interfaces that 

govern how the component parts interact (Baldwin and Clark 2006) creates building blocks that 

each embody some subset of overall system behavior. Several authors have pointed out that when 

complexity reaches a certain threshold, it can be isolated by defining a module as a separate 

abstraction with a simple interface (Baldwin and Clark 2000, Ethiraj and Levinthal 2004). 

Modularity can promote specialization and more facile innovation, and, in this way, some 

modules can be viewed as abstractions. Yet not every modular partitioning leads to components 

that are abstractions in the general sense. If the partitioning is driven by an effort to decouple 

system components and distribute development efforts, individual modules may not have 

standalone value for recombination. Abstractions are intended to stand alone and are intended 

to be used in unpredictable future recombination. 

Raising the Level of Abstraction 

 Our central proposition is that raising the level of abstraction can be an effective strategy for 

facilitating and increasing the pace of adoption of a complex technology. This encompasses 

increasing the scope of the innovation, often by incorporating more of the dependencies or 

integrating complements so that a user is relieved of the task of orchestrating all of the necessary 

pieces. In so doing, it increases product development productivity by reducing the need for  deep 

understanding of implementation details in exchange for limiting the ultimate degrees of design 

freedom. 

This is a concept that is well known from the earliest days of the development of computer 

software. Digital computers carry out sequences of arithmetic and logical operations that are 



controlled by binary data bits (ones and zeros). Machine-language programs use these binary 

data bits to tell a computer precisely what to do at each step, but the instructions are extremely 

primitive and only do things like move a number between storage locations or perform simple 

arithmetic or logical operations. If programmers had to worry about this level of detail, they 

would find it difficult to rise above the minutia and think about the big picture (Návrat 1994, 

Návrat and Filkorn 2005). Computer scientists eased their task by developing symbolic “ 

assembly languages.”  Assembly language programs were the earliest “ higher-level language”  

and were symbolic representations that were translated into the ones and zeros that the computer 

actually uses by a program called an assembler. They introduced a layer that was the next higher 

level of abstraction. They were followed by increasingly higher-level languages, such as 

FORTRAN, which stood for formula translator, developed by John Backus and a small team at 

IBM from 1954 to 1957 (Backus 1979). This was a revolutionary innovation because it enabled 

programmers to express what they wanted to do in a more easily understood form, like “c  = a  + 

b .”  The programmer ran a “ compiler”  to translate the high-level language program into the 

primitive machine instructions. 

More sophisticated languages, such as C++ and Java, operate at progressively higher levels 

of abstraction, helping designers to segregate the concepts that a programmer wants to 

implement from its instances of implementation. These levels are layers that facilitate the 

introduction of new unforeseen hardware below the language layer, or new unforeseen 

applications above the language layer. Abstraction suppresses the details and simplifies the 

understanding of the result (Shaw 1989). Over time, abstraction has been associated with 

language constructs; specification techniques; program structures, such as algorithms and data 

types; and strategies for modular decomposition. Software developers have been able to focus on 

high-level system architectures and less and less on the details of implementation. 

In computer software, abstraction today is looked upon as the isolation of a software 

subsystem or module of a larger system into a reusable component. Development of abstraction 

techniques has been a major source of improvement in programming practices (Shaw 1989). Some 

even argue that entire history of software engineering can be characterized as progressively rising 

levels of abstraction (Aaronson 2006). This has been evident in the development of new computer 

languages, platforms, methods, and tools. Today, reusable components and software-container 

systems play a critical role in software innovation. 



The same concept has also been applied to hardware, but in a more limited way. Early 

computer systems required programmers to understand how each piece of attached hardware, 

such as a printer, worked. This became a significant burden as the variety of devices proliferated. 

Software developers solved this problem by adding a layer of abstraction, which hid or 

encapsulated knowledge of the device within a module. For example, Microsoft introduced a 

hardware abstraction layer into its Windows operating system to insulate software writers from 

the wide range of hardware that was developed by third parties. Programmers then wrote 

standardized instructions, such as for printing a page, and sent them to the operating system. The 

operating system, in turn, communicated with the device, using a “device driver.”  Device-

specific knowledge was not communicated to other parts of the system, which also enabled 

independent development of modules and better comprehensibility (Parnas 1972). The physical 

printer plus its associated driver abstracted the printing function from the point of view of the 

operating system software. More importantly, the users of the abstraction were relieved from 

needing to know the underlying mechanism of how the device functioned. 

These methods have spread to hardware at the microchip level as well, with hardware 

compilers that can implement component descriptions into physical designs of circuit 

components, along with associated simulation and modeling tools that enable designers to work 

at a high level (see, for example, Van Rompaey et al. 1996  and Baghdadi et al. 2001). 

Raising the level of abstraction can describe the strategy behind facilitating the adoption of 

complex technologies, especially those that rely on cumulative innovation (Hargadon and Sutton 

1997) and recombination. Innovation requires a broad search for information and recombination 

of different kinds of knowledge (Nelson and Winter 1982, Levinthal and March 1993). When new 

technologies emerge, they often face challenges in adoption (Anderson and Tushman 1990), 

especially by incumbent firms (Nelson and Winter 1982, Levinthal and March 1993, Tushman and 

O’ Reilly 1996), as firms have to first recognize their value and then assimilate them (Cohen and 

Levinthal 1990). The recombination of distant or diverse knowledge is essential for breakthroughs 

because research confined to narrow domains might lead to intellectual lock-in and foster 

incremental innovation (Gavetti and Levinthal 2000, Fleming 2001, Ethiraj and Levinthal 2004, 

Kaplan and Vakili 2015). Thus, bridging distant or diverse knowledge is important to enhancing  

creativity (Hargadon and Sutton 1997, Audia and Goncalo 2007, Kaplan and Vakili 2015), and the 

use of general and abstract knowledge in innovation fosters the division of innovative labor 



(Arora and Gambardella 1994). Explicitly seeking to raise the level of abstraction should facilitate 

easier incorporation and reduce barriers to adoption. 

Some examples are instructive. Many electronic device manufacturers raise the level of 

abstraction on a complex new technology in order to speed its incorporation into their customers’  

designs. They do this by creating and publishing “ reference designs.” Reference designs offer 

complete example designs, which include wiring schematics, electronic computer-aided design 

and computer-aided manufacturing files intended to be used as direct input to manufacturing 

systems, and software that could be customized with a customer’s logo and branding. 

Implementation details are hidden, even though they are critical to the underlying device’ s 

proper functioning. The only things revealed to the adopter are interface details and the 

abstraction’s functional behavior, a black box whose inputs, outputs, and behaviors are fully 

characterized. Compared with doing their own de novo design, a reference design spares users 

from having to understand implementation methods and details and makes the adoption of a 

complex new technology much easier. 

A historically important example was how Intel Corporation sped the adoption of next-

generation chip technology in personal computers. In 1995, the company was experiencing 

difficulty getting its PC customers to keep pace with its new microprocessor releases. It wanted 

companies like Dell and Compaq to offer models that incorporated its latest chips as soon as they 

became available, but found they were lagging because of the delays in absorbing new design 

information. It solved the problem by providing its “ATX”  reference designs, which were 

matched to its latest CPU chips as soon as they became available. All of the complex electrical 

signaling and timing were hidden— PC manufacturers had no need to understand the 

implementation details. The reference designs abstracted all of the electrical signaling needed to 

assemble and mass-produce the heart of a PC, making the embodied microprocessor innovations 

simpler to recombine. The reference design included the locations of mounting holes and 

specification for every electrical and signal connection. Designers of products like industrial 

controllers for machine tools, cash registers, and other devices that needed inexpensive 

computation and user interaction could recombine their own innovations with the ATX 

abstraction of a basic computing engine that included provisions for a simple user interface and 

connectivity. The ATX innovation enabled a huge wave of new market entrants with no prior 

experience in the technology, including companies like Lenovo. 



Innovators also use abstractions as platforms that promote recombination. A smartphone is 

an example of a platform that abstracts Internet connectivity, computing power, and a 

touchscreen-display user interface in a battery-operated package. The abstraction includes 

application programming interfaces (APIs) used in an associated software-development kit, for 

example, to provide touchscreen interface actions or camera image capture. The staggeringly 

complex details of implementation are hidden. Although designing it as a building block for 

others to use might not have been the original objective, it facilitates more efficient cumulative 

innovation and recombination. New personal medical test devices use smartphones as Internet 

edge devices to log and send data. They are used as subsystems in infrared cameras, 

measurement tools, and other applications that need generic computing and communications 

functionality. 

Abstractions can extend beyond hardware and software to the provision of services. Cloud 

computing services such as Amazon Web Services (AWS) raise the level of abstraction for generic 

connected computing and communications, enabling innovators to purchase networked 

computing capability and capacity on demand without having to be concerned with the details 

of the hardware or software provisioning. Traditionally, the provisioning is performed by a large 

IT infrastructure organization, but AWS abstracts all of those complements and makes them 

invisible, making adoption easier. 

Progressively higher levels of abstraction are often visible in tiered product innovations. 

Google Maps is a consumer-oriented geographic information system. After acquiring the original 

software, Google converted it into a web application (app) with a JavaScript API that allowed 

embedding in third-party websites. Google Maps abstracted real-time geolocation information, 

including complex technologies like traffic-sensing, and enabled recombination with services like 

the ride-sharing offerings of Uber, Lyft, and others. In the next higher layer, the Uber app 

delivered an innovative new service to consumers, but also raised the level of abstraction by 

offering a ride-request button that others could incorporate into their own new services, for 

example, to provide food delivery. Uber marketed this as a way to build on-demand delivery 

solutions for local retailers and online shops. The “Ride there with Uber”  button brought 

everything in the Uber application— fare estimates, a pick-up time estimate, and location— into 

the new service with just a few lines of code. Built on top of Google Maps, which, in turn, was 

built on top of smartphone platforms, Uber abstracted a modular ride service for firms like 



OpenTable, Starbucks, and United Airlines to  recombine delivery services within their own 

service apps at a next higher tier. 

Innovators can use a strategy of raising the level of abstraction to enhance network effects on 

their platforms by bringing more parties onboard. Voice assistants, such as the Google Assistant 

or Amazon Alexa, speed the incorporation of voice recognition into new services. The Google 

Assistant provides a voice user design interface and framework for conversational design, and 

Amazon’ s Alexa offers access to specific functional groups, like a video-skill API or music-skill 

API. Both of these abstractions package voice-recognition functionality in a way that allows 

others to easily build this functionality into their products without any of the formidable research 

and development capabilities needed to commercialize the core speech-recognition technology. 

This encourages more parties on all sides to join the platform. 

Higher-Level Abstractions Replace Lower-Level Abstractions 

Higher-level abstractions that simplify or further reduce the need for technical expertise often 

replace lower-level ones in the market and can shift the dominant design paradigm. An example 

is the adoption of software container systems. An important innovation in the software operating 

systems for computers was the virtual machine, a programming environment that abstracted 

server hardware and made it appear as if it was a dedicated machine from the point of view of 

an application developer. Everything that was necessary to run the application was contained 

within the virtual machine, and multiple instances of the virtual machine could run on a single 

hardware computer system. This is now a mature technology and is available from a number of 

vendors. 

Software containers like Docker virtualize the operating system running on a computer and 

make it appear like the operating system and all dependencies required to run a program are 

within a container image. This is a higher level of abstraction than the virtual machine, and it has 

that advantage that only one copy of the operating system is needed, improving program-

execution efficiency, as well as speed of deployment. Software containers have their roots in 

primitive constructs like the chroot  system call, which was introduced in 1979, and FreeBSD Jails, 

a way of partitioning the FreeBSD operating system into independent systems introduced in 2000 

(Hope 2002). This was followed by process containers introduced by Google in 2006 (Menage 

2007), but even those required a high level of skill to implement. Docker emphasized ease of use 



and delivered a higher level and more complete abstraction that offered an ecosystem for 

container management. Following its introduction in 2013, its popularity took off (Merkel 2014, 

Rubens 2017). As a higher-level operating system abstraction, it has started to substantially 

replaced virtual machines in new deployments. A 2018 survey of 576 IT industry leaders reported 

that 11.98% of enterprises had deployed them and 47.05% planned to (Diamanti 2018). Google 

Trends, which reports relative search interest, shows a clear displacement of “ virtual machines”  

by “ Docker”  over a 15-year period as software implementers switched to the higher-level 

abstraction. 

Case Study: Reducing Resources Required to Apply New Technologies 

We examined the Taiwanese company MediaTek, who raised the level of abstraction for 2.5G 

mobile handset makers with a design package that included everything needed to assemble the 

hardware and software (Shih et al. 2010). On the hardware side, it provided a reference design in 

electronic form so that customers could easily modify them. Customers could also choose to use 

them directly without modification. In that case, all they had to do was add a plastic case, and 

they would be able to offer a complete, albeit basic, product. 

On the software side, the company included a proprietary operating system, a man– machine 

interface code base, and key design tools. MediaTek’s customers could use these to customize the 

software that ran on the handset and quickly produce a custom look and feel with tailored 

functionality, often over the course of a lunch break, and then could download it into the handset. 

Handsets also incorporated other complementary components that the company did not supply. 

The company did extensive testing and qualification of components and published the data for 

its customers. For example, MediaTek did not make the camera modules for phones, but, rather, 

it tested modules that were available on the market and optimized drivers and software for them. 

Color rendition and image clarity were very dependent on the software used with them, so 

MediaTek invested extensively in R&D and testing to ensure that its designs could produce good 

results for its customers who were far less skilled. This resulted in a design robustness that could 

survive the customers who chose to use inexpensive lenses instead of better quality ones, or 

customers who wanted to take design or engineering shortcuts. 

Although traditional contemporary feature phone firms, such as Nokia and Motorola, 

employed hundreds of engineers to develop and produce a product over the course of a nine-



month product cycle, a typical MediaTek customer design team might have as few as 10 

employees and could produce a new feature phone in several weeks. The company’s  abstraction 

efforts led to the emergence of nearly a thousand small phone makers in the Shenzhen, China 

area. 

MediaTek was particularly interesting because its company strategy was based on raising the 

level of abstraction in different consumer electronic device markets. Prior to its work with mobile-

phone handsets, it had done the same thing by reducing the electronics for making a CD-ROM to 

a single silicon chip, followed by doing the same thing for DVDROMs, DVD/Blu-Ray players, 

and television sets. In each of these product categories, the company enabled a large number of 

new entrants. 

Strategic Implications 

The innovation model described here provides one explanation for the rapid uptake of 

sophisticated new technologies. An innovator can raise the level of abstraction of a technology to 

make it easier to incorporate and economize on the know-how, both tacit and explicit, that is 

required to use it. This frame also raises some implications as well as questions for further 

research. 

For firms, raising the level of abstraction is away to lower the barriers to adoption of a new 

technology, as exemplified by the use of reference designs. The MediaTek example highlighted 

both benefits and consequences of the approach. By making its technology more accessible with 

the objective of increasing adoption, it commoditized products that incorporated it. Interestingly, 

Intel produced a similar outcome with its ATX reference designs, and, in both cases, the 

promulgators retained a key value-extraction mechanism in the form of the semiconductor chip 

at the center of their respective platforms, and both derived considerable benefits. Thanks to 

network effects associated with usage of the Intel platform, ATX became the dominant design for 

personal computers. MediaTek, on the other hand, faced competition from other chip firms, 

including Qualcomm and Samsung, so although it was able to sell over 350 million chipsets in a 

year, the main effect was to commoditize lower tier feature phones on which producers made 

very little profit. 

For firms who operate matching platforms, abstracting a service, such as the “ Ride there with 

Uber”  example, can simplify adoption and bring more users to the service provided on one of 



the platform sides. Again, the focus is on how to encourage other innovators to build on the 

technology or service by making it easy to incorporate. 

Innovators operating at the higher levels of abstraction don’t have detailed understanding of 

inner workings at lower levels in the cumulative innovation pyramid. Thus, although raising 

levels of abstraction lies at the heart of economizing on bounded rationality, innovation could 

become more limited beneath the abstraction layer. We asked a senior manager at Microsoft how 

many of her employees actually knew how to write a compiler, something that was once a rite of 

passage for computer science undergraduates. Her answer was that none of her new hires did, 

and if anyone needed to know how, they had to train that individual. When there is no longer the 

detailed understanding of the base technologies and how to implement them de novo, there is 

little incentive to go back and revisit the technology that the abstraction is built upon. This can 

become an issue when the balance point in core system design tradeoffs changes because of a new 

application type that might disproportionally favor use of one resource over another. This is quite 

evident today in the evolution of domain-specific microarchitectures for new application areas 

like machine learning. One author commented: 

It adds a dimension that most of the industry is not used to. We are not really being 

taught that kind of thing in school, and it’s not something that the industry has decades 

of experience with. So it is not ingrained in the programmers. (Bailey 2020) 

Said differently, a higher-level abstraction reinforces dominant designs to the exclusion of 

new approaches (Anderson and Tushman 1990). The commercial success of the ATX 

motherboard abstraction promulgated by Intel stifled innovation in the PC system architecture 

for many years. ATX motherboards achieved de facto standardization, and the very high volumes 

and low market pricing made it difficult for competitors to reap any profit. This channeled 

innovations primarily into cost reductions and cosmetics, with little architectural innovation. 

Intel competitor AMD achieved some success by replicating the external interfaces of ATX in its 

own version of the reference design and then changed the memory controller architecture inside 

to elicit better performance. But even then, it had trouble delivering consistent market success. 

Computer architects have long pointed out that memory-system performance was crucial to 

better overall system performance, but the market weight of ATX stifled innovation within the 

confines of the abstraction. We discussed this with leaders of the Taiwanese computer industry 



and memory chip manufacturers who recognized the opportunity for relieving a system-

performance bottleneck, but they argued that the economics were overwhelmingly against 

making significant changes. It was only the emergence of hyperscale datacenters and their high 

consumption of computer systems that provided the economic motivation for firms like Google, 

Amazon, and Facebook to revisit the design assumptions and make fundamental architectural 

changes that were  more suited to their own specific usage cases (Thusoo et al. 2010, Hazelwood 

et al. 2018). 

In the same vein, the Intel ATX example also raise questions about technological learning 

more broadly. Researchers who have studied learning by example point out that it is a well-

documented process for cognitive-skill acquisition. People gain a deep understanding when they 

can follow a worked-out example (Renkl 2005); a reference design is essentially this. For novices 

who don’t have deep prior exposure to the material, an absorption process that relies on studying 

worked examples is more effective for learning, as well as more efficient with less investment of 

time and effort during acquisition (Atkinson, et al. 2000), and is a more efficient approach than 

trial and error (Sweller and Cooper 1985, Cooper and Sweller 1987). But does reliance on 

abstractions confine learning to narrower domains? Their more widespread use might explain 

the increasing complexity and deeper tiering found in modern supply chains. Our study of the 

Chinese motorcycle industry found that firms who used reference designs had great difficulty 

innovating beyond superficial attributes like paint schemes, shapes of the handlebars, or shape 

of the gas tank (Shih and Dai 2010). Firms who offer successful abstractions reduce incentives to 

invest in their layer of a value network, which can provide an ancillary benefit of protecting tacit 

or proprietary knowledge. Their customers tend to maintain focused expertise above the 

abstraction layer with a correspondingly greater reliance on suppliers below them. 

We think that raising the level of abstraction by a firm as either an implicit or explicit strategy 

provides a useful lens that helps explain the rapid adoption of some new advanced technologies 

as well as their speed of diffusion. It complements the established body of literature on 

modularity by adding a temporal element and the notion of higher levels, at which an innovator 

interfaces. It also raises questions about the stratification of innovative activities, as the pressure 

from lowered entry barriers relieves innovators from the need to develop an understanding of 

the technical foundations that might limit more basic innovation down the road.  
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